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ABSTRACT 

 
A structural damage detection method is presented, labeled as Partitioned Damage Detec- 

tion (PDD) method, which employs the recently developed displacement-only partitioned (DP) 
equations. The proposed PDD method starts with experimentally or simulation-generated modes 
and mode shapes. Second, it transforms the conventional assembled flexibility into DP-based 
partitioned flexibility. Third, the free-free forms of substructural flexibility is extracted from 
the DP-based flexibility. Fourth, Damage Indicator (DI) for each substructures are computed by 
the ratio of the traces of the free-free healthy and damaged substructural flexibilities. Numerical 
simulation and experiments show that the proposed PDD method correctly identifies both the 
damage location and damage levels for determinate structures. For indeterminate structures, the 
proposed PDD method correctly identifies the damage locations, while underestimating damage 
levels. A compensation scheme is developed for improving damage levels, which results in a 
reliable estimation of both damage locations and damage levels. 

INTRODUCTION 
 

The present study is focused on a new model-based method, labeled as Partitioned Dam- 
age Detection (PDD) method, with which one may be able to assess damage locations and, in 
particular, damage levels. 

Our motivations for developing the proposed PDD method are as follows: 

• Nearly all of the modern infrastructures, power plants, modern transportation vehicles (car, 
train, boats, airplanes, etc.) utilize Finite Element Method (FEM) for their design, perfor- 
mance evaluation and onsite-test correlations. 
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• However, FEM models utilize assembly of many finite elements into the global equations.
In so doing, while a FEM model yields the overall behavior of the model, they often mask
its elemental behaviors.

• Structural health monitoring should offer not only damage state but more importantly dam-
age locations (substructures) and their damage levels compared with their healthy states.
This calls for a method that can, for each subsystems or partitions, individually assess its
health state and/or damage levels.

• Recently, new FEM formulations have been developed for FEM modeling and solving that
do not require assembly of elements or substructures, labeled as DP(Displacement-only
Partitioned) formulation [1] and its dual called PartFlex method [2]. These new formula-
tions yield partitioned flexibility from simulated or measured modes and mode shapes.

• In the present study, employing the partitioned flexibility, we will develop a method not
only for detecting damage locations (in which elements or which substructures damage
occur) but more importantly for assessing damage levels, employing the DP and PartFlex
formulations

PARTSTIFF AND PARTFLEX FORMULATIONS

We recall from [1, 2] the coupled yet unassembled equations of motion as

PartFlex Equations [2] PartStiff Equations [1]

d = Fpf (f −Md̈)
⇓

Fpf q̈+M−1q = Fpf f , q = Md

d̈ = Ps(f −Kd)
⇓

Md̈+Kpsd = Pdf , Kps = PdK, Pd = MPs

where the partitioned displacement, applied force, mass and stiffness matrices are given by

d =


d1

...
dNs

 , f =


f1

...
fNs

 , M =

M
1 · · · 0

...
. . .

...
0 · · · MNs

 , K =

K
1 · · · 0

...
. . .

...
0 · · · KNs


and the partitioned flexibility and partitioned stiffness matrices are given by

Fpf = F− FBCpfB
TF, Cpf = PλKb Ps = [M−1 −M−1BCmBTM−1]

Pλ = Ib −KbLf [LT
f KbLf ]

−1 LT
f Pm = Ib −MbLf [LT

f MbLf ]
−1 LT

f

Kb = [Fb]
−1, Fb = [BTK−1B] Mb = [BTM−1B]−1,Cm = PmMb

F =

K
1 · · · 0

...
. . .

...
0 · · · KNs


+

Figure 1 schematically illustrates the essential difference between the assembled FEM equa-
tions and the PartStiff equations. Note that, whereas the conventional assembled FEM equations
couples among the adjacent elements, the PartStiff method preserves that unassembled stiffness
matrices as unassembled block-diagonal matrices. The necessary coupling among the partitioned
(uncoupled) elements or substructures are accomplished by the coupling projector (Pd).



Figure 1. Matrix Profiles of Conventional Assembled vs. PartStiff FEM Equations.

DAMAGE INDICATOR OF PROPOSED PDD METHOD

It has been shown in previous studies [1, 2, 4] that the nonzero eigenvalues and eigenvectors
of the two FEM equations are related according to

Assembled Equation PartStiff Equations
Eigensystem: KgΦg = MgΦgΛg KpsΦps = MΦpsΛps

Nonzero Eigenvalues: Λps = Λg

Nonzero Eigenvectors: Φps = LgΦg

Displacement Relation: dps = Lgdg

(1)

The intrinsic system energy associated with the vibrating system may be expressed as (see,
e.g., [4]):

Energy Assembled Equation PartStiff Equations

Eg =
∑ng

k=1
1

(ω2
k)g

Eps =
∑ng

k=1
1

(ω2
k)ps

⇓ . ⇓
Eg = trace(K−1

g Mg) Eps = trace(K+
psMps)

(2)

Employing the preceding energy relations, we propose the present PDD (partitioned damage
detection) criterion as follows:

Damage indicator (DI) Assembled Equation PartStiff Equations
DIg =

(Eg)healthy
(Eg)damaged

DIps =
(Eps)heathy
(Eps)damaged

(3)

In practice, however, it is not possible to measure all the modes from system identification.
Moreover, identification of damage locations. To this end, we offer alternative DI formula for



Figure 2. Fixed-Fixed Rod Problem

partitioned system as follows (for 3-partition system):

Fps = LgΦgΛ
−1
g ΦT

g L
T
g

=

Fps(1, 1) Fps(1, 2) Fps(1, 3)
Fps(2, 1) Fps(2, 2) Fps(2, 3)
Fps(3, 1) Fps(3, 2) Fps(3, 3)


DI for partition i =

trace(Fps(i, i))healthy
trace(Fps(i, i)))damaged

(if fixed partition)

= Pr[
trace(Fps(i, i))healthy
trace(Fps(i, i)))damaged

]Pr (if free-free partition)

(4)

where Pr is a floating mode projector.
It turns out, when the entire modes are fully identified, the preceding formula may be replaced

by the Schur complement, i.e.,

[Fps(i, i)]
S = Fps(i, i)− Fps(i, k)[Fps(k, k)]

−1Fps(k, i)

⇓

DI for partition ( i) =
trace[Fps(i, i)]

S
healthy

trace[Fps(i, i)]Sdamaged

(5)

PERFORMANCE OF PROPOSED PDD-BASED DAMAGE INDICATOR

In order to evaluate the effectiveness of the proposed Damage Indicator (DI) formulations
(4) and (5), a simple fixed-fixed 1D rod problem is selected, as shown in Figure 2. The rod is
divided into five substructures, each consisting of two rod elements. Despite its simplicity, this



example effectively demonstrates three key attributes: it is an indeterminate structure, damage
is localized in partition 3 with stiffness reduced to 50%, and it illustrates the impact of using a
reduced number of identified modes.

Ideally, in the undamaged state, the DI values for substructures (1, 2, 4, 5) should be 1, while
the DI value for the damaged partition (3) should be 0.5. Figure 2 illustrates the variations in
DI values based on the number of modes considered. When the assembled FEM equations are
applied, the DI value for partition 5 erroneously converges to 0.54 not 1. In contrast, when the
proposed PartStiff equations are employed, even with a limited number of modes, the method
correctly identifies the damaged partition (3). Additionally, as the number of modes increases,
the DI value for partition 3 converges to 0.5, further validating the effectiveness of the PartStiff
method in accurately detecting both the damage location and extent.

The proposed DI method has been further evaluated using numerical experiments involving
beams and other structural configurations, yielding promising results. Current efforts are focused
on developing DI digital twins capable of real-time structural health monitoring. Further findings
and methodological advancements will be discussed in the conference presentation. It is noted
that the PartStiff and its allied PartFlex methods have been applied to number of important com-
putational mechanics problems [1]- [7], some of which pertinent to structural health monitoring
will also be presented at the workshop.
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