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ABSTRACT 

This paper introduces a conceptual framework to advance Self-Generating Digital 
Twins (SGDTs) by integrating Hierarchical Digital Twin (HDT) architectures, Physics- 
Informed Machine Learning (PIML), Generative Artificial Intelligence (Gen-AI), and 
dynamic diffusion models. Current SGDT implementations face significant challenges 
in real-time Structural Health Monitoring (SHM) due to the complexity of processing 
vast, multi-dimensional data streams and the inherent difficulties in achieving accurate 
predictive insights across large-scale systems. The reliance on a singular SGDT frame- 
work often results in inefficiencies when addressing multi-level structural complexities 
and managing uncertainties, highlighting the necessity for a scalable and layered ap- 
proach. The proposed framework leverages HDTs to decompose global and local struc- 
tural behaviours into interconnected layers, simplifying computational demands while 
enhancing interpretability. By embedding fundamental physical laws and constraints 
into the learning process, PIML improves the efficiency and accuracy of Gen-AI mod- 
els. Gen-AI autonomously refines the digital twin models, synthesising actionable in- 
sights from real-time data streams, while dynamic diffusion models facilitate precise 
damage evolution predictions under varying operational and environmental conditions. 
This proposal addresses critical gaps in real-time SHM by overcoming the limitations 
of standalone SGDT systems and introducing a methodology that is both scalable and 
adaptable. It offers a novel pathway for optimised resource allocation, reduced down- 
time, and improved sustainability in infrastructure management. Although validation 
through real-world application is a future objective, the framework provides a robust 
foundation for advancing SHM technologies to meet the growing demands of mobility, 
autonomy, and sustainability. 

 
INTRODUCTION 

The increasing complexity of modern infrastructure systems, along with the growing 
demand for sustainability, resilience, and operational intelligence, has intensified inter- 
est in the development and deployment of Digital Twin (DT) technology. A DT refers 
to a digital replica of a physical asset that is continuously updated with real-time data 
and capable of reflecting the asset’s current state, performance, and environmental in- 
teractions [1, 2]. Originally conceived for aerospace and manufacturing, DTs are now 
being adopted in the civil engineering domain, particularly for SHM, where they enable 
condition-based assessment, life-cycle planning, and predictive maintenance of critical 
assets [3]. 

 
Despite this progress, traditional DT models often fall short in high-demand environ- 
ments due to their static design, limited scalability, and inadequate integration of phys- 
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ical laws. The concept of SGDTs has emerged to overcome these limitations, intro-
ducing autonomous updating and continuous learning capabilities. These SGDTs aim
to respond dynamically to real-time data streams from sensors and monitoring devices
without requiring manual intervention [4]. However, most SGDT implementations still
face major challenges related to system complexity, model generalisation, and uncer-
tainty management.

A significant limitation arises from treating infrastructure systems as monolithic entities,
which restricts the ability of digital twins to represent multi-scale structural behaviour.
Moreover, although machine learning models are often employed to improve predictive
capabilities, they frequently disregard the governing physics of the system, leading to
poor extrapolation and reduced trustworthiness under diverse operational conditions [5].
Furthermore, the influx of high-frequency, high-dimensional sensor data imposes com-
putational burdens that impair real-time analysis and decision-making.

This paper proposes a new conceptual framework for SGDTs that integrates several
advanced computational paradigms into a cohesive system. The framework adopts a
hierarchical approach to DT development, allowing the decomposition of global infras-
tructure behaviour into modular and interconnected subsystems. This enhances scala-
bility and provides a clearer understanding of how local changes impact system-level
responses [6]. To improve the generalisability and physical fidelity of machine learning
models, the framework employs PIML, which embeds physical laws directly into the
learning process and reduces reliance on purely data-driven techniques [7].

To further enhance the system’s autonomy, Gen-AI is introduced to continuously refine
DT models, synthesise missing or corrupted sensor data, and propose new operational
insights based on historical and real-time information [8]. Finally, dynamic diffusion
models are integrated to enable spatio-temporal reasoning and damage prediction, cap-
turing how structural changes evolve across time and space under variable environmental
and loading conditions [9].

By combining these complementary components, the proposed SGDT framework ad-
dresses the shortcomings of existing DT implementations in SHM. It supports real-time
monitoring, predictive maintenance, and intelligent decision-making, while promoting
scalable architecture and interpretability. The result is a robust foundation for advancing
infrastructure resilience, minimising unplanned downtime, and aligning infrastructure
management with the goals of digital transformation and climate-aware sustainability.

The remainder of the paper is organised as follows: Section 2 presents the methodology,
describing the theoretical and computational foundations that support the integration of
sensing, physics-informed learning, generative modelling, and diffusion-based reason-
ing. Section 3 introduces the proposed framework, outlining its layered architecture
and the interaction between its key components. Section 4 provides a discussion of the
framework’s expected outcomes, practical implementation considerations, and potential
applications in real-world SHM systems. Finally, Section 5 concludes the paper and
outlines directions for future research, including validation strategies and deployment



pathways.

METHODOLOGY

The methodology underpinning this study is designed to overcome the limitations
of existing SHM approaches by developing a next-generation SGDT framework. This
framework combines multiple complementary technologies to achieve real-time mon-
itoring, intelligent anomaly detection, and predictive maintenance of civil infrastruc-
ture assets. The methodological approach is grounded in the integration of four pillars:
hierarchical system modelling, physics-informed learning, generative modelling, and
uncertainty-aware propagation dynamics. Data acquisition begins with sensor instru-
mentation embedded in the infrastructure. These include accelerometers, strain gauges,
thermocouples, and displacement sensors, which are installed across key locations of
the physical structure. The data from these sensors is streamed continuously and prepro-
cessed for noise reduction, time synchronisation, and feature extraction. This serves as
the primary input into the SGDT system.

The first computational step involves the implementation of a HDT architecture, which
allows for the structure to be decomposed into multiscale subsystems. Rather than rely-
ing on a monolithic digital replica, the HDT captures system behaviour at both the global
and local levels. For instance, in a bridge application, the global model might represent
the entire deck response under traffic loads, while local models might focus on critical
joints or supports. This structure supports parallel processing, improves scalability, and
enhances interpretability by linking specific data patterns to structural elements. Once
the HDT is instantiated, the PIML module is activated. Here, physical laws governing
the system, such as equilibrium, constitutive relations, and compatibility, are embedded
directly into the loss functions of neural networks. This approach guides the learning
process so that data-driven predictions adhere to known mechanical behaviours. By us-
ing Physics-Informed Neural Networks (PINNs) or other hybrid solvers, the model can
produce realistic structural responses even in the absence of dense labelled data. This
step reduces overfitting, increases robustness, and ensures compliance with engineering
theory.

The Gen-AI layer is then engaged to enhance the self-adaptivity of the SGDT. Using
models such as Variational Autoencoders (VAEs) or Generative Adversarial Networks
(GANs), the system generates synthetic data streams, fills in missing measurements, and
reconstructs unobserved failure scenarios. This generative capability not only strength-
ens the model’s resilience to sensor failures but also enables forward simulation under
unseen loading or environmental conditions. Moreover, Gen-AI can be used to simu-
late structural degradation pathways, training the SGDT to anticipate deterioration be-
fore it occurs. Lastly, the dynamic diffusion layer models how damage indicators and
anomalies propagate across the structural network. Using graph-based diffusion pro-
cesses or spatio-temporal partial differential equations, the framework quantifies uncer-
tainty and temporal dynamics of evolving damage states. This enables early-warning
mechanisms, load redistribution strategies, and prioritised maintenance recommenda-
tions. Overall, the proposed methodology is holistic, modular, and scalable. It bridges



physics-based modelling with data-driven intelligence and offers a pathway toward real-
time autonomous SHM for future infrastructure systems.

PROPOSED FRAMEWORK

The proposed framework for advancing SGDTs is built upon an integrated, multi-
layered architecture that supports real-time SHM and predictive maintenance. It unifies
sensing technology, hierarchical modelling, physics-informed learning, generative in-
telligence, and spatio-temporal forecasting into a cohesive system capable of evolving
alongside the physical asset it represents. At its foundation, the framework begins with
the physical infrastructure and its associated sensor network. These sensors continuously
capture structural responses, environmental conditions, and operational loads. Data col-
lected from the field is transmitted in real-time, forming the primary input stream that
drives the behaviour of the DT. The types of data involved include acceleration, strain,
displacement, temperature, and other operational indicators relevant to the asset’s per-
formance.

Building upon this data foundation is the HDT architecture. Unlike traditional mono-
lithic DTs that attempt to model the entire system as a single entity, HDTs adopt a
modular and scalable representation. Each subsystem or critical component within the
infrastructure is modelled as an independent but interconnected DT. For example, in the
case of a bridge, global models simulate deck-level responses, while local twins focus
on bearings, joints, or support elements. This decomposition enables higher compu-
tational efficiency, supports parallel model development, and facilitates more targeted
diagnostics. Interactions between global and local twins are maintained through clearly
defined interface conditions, ensuring coherent system-level behaviour. Above the HDT
layer resides the PIML module. This layer addresses a key limitation of standard data-
driven models, their tendency to overfit or behave unreliably when extrapolated beyond
the training data. By embedding the governing physical laws directly into the architec-
ture of neural networks or into the optimisation process, PIML ensures that the learned
models comply with the known principles of structural mechanics. This could include
equilibrium equations, material constitutive laws, or energy conservation constraints.
The result is a learning system that generalises better, requires less data, and offers in-
terpretable outputs such as damage indicators, stress fields, or modal parameter updates.

To enhance the autonomy of the framework, a Gen-AI module is incorporated. This
layer leverages advanced generative models such as VAEs, GANs, or diffusion-based
transformers to synthesise missing data, augment sensor readings, and explore unob-
served system behaviours. Gen-AI allows the SGDT to evolve continuously, adapt to
unseen conditions, and maintain operational awareness even under sparse or corrupted
sensor scenarios. Moreover, generative models are useful for simulating failure scenar-
ios or extreme events, supporting proactive planning and resilience assessment. The
final component of the framework is the Dynamic Diffusion layer. This layer introduces
spatio-temporal forecasting capabilities by modelling how damage or stress concentra-
tions spread across the infrastructure. It accounts for the interconnectivity of structural



components and simulates damage propagation using graph-based diffusion equations
or dynamic stochastic processes. By integrating uncertainty quantification and time-
dependent degradation modelling, this layer supports early warning, prioritisation of
inspections, and risk-based maintenance scheduling.

Each module in this framework operates in a continuous feedback loop. Real-time sen-
sor data drives the DT; the twin refines itself through physics-informed learning and
generative updates; and the diffusion layer predicts how local events may escalate into
broader structural concerns. The result is an intelligent, adaptive, and resilient DT sys-
tem capable of supporting infrastructure operators in making timely and evidence-based
decisions. This proposed framework offers a path forward in overcoming the limitations
of conventional SHM systems. The integration of physical principles with AI-driven
automation within a hierarchical and dynamic architecture forms a solid foundation for
scalable, self-adaptive monitoring systems designed to meet the future demands of in-
frastructure.

DISCUSSION AND EXPECTED OUTCOMES

The proposed SGDT framework introduces a novel synthesis of hierarchical system
modelling, physics-informed learning, generative intelligence, and diffusion-based fore-
casting for real-time SHM. Its conceptual strength lies in unifying these diverse method-
ologies into a modular and scalable architecture capable of adapting autonomously to
changing structural and environmental conditions. One of the primary advantages of
this framework is its hierarchical structure, which enables both local precision and global
awareness. This multiscale modelling approach is essential for large civil infrastructure,
where local failures can have system-wide implications. By decomposing the asset into
interconnected digital subsystems, the framework promotes computational efficiency
and facilitates targeted analysis, which would be infeasible using traditional monolithic
models.

The integration of PIML further distinguishes this approach. Unlike conventional black-
box models, the inclusion of governing physical laws as constraints during training
ensures that predictions remain interpretable and physically realistic. This greatly en-
hances the model’s generalisability and reliability, especially in safety-critical applica-
tions where interpretability is essential for decision support. Gen-AI adds another layer
of resilience and intelligence to the system. Its ability to synthesise plausible sensor
data, reconstruct missing information, and simulate unobserved deterioration pathways
extends the capabilities of the DT beyond reactive monitoring. This paves the way for
predictive and proactive strategies that can reduce maintenance costs, optimise resource
allocation, and improve asset longevity.

Meanwhile, dynamic diffusion models contribute to situational awareness by forecast-
ing the spatial and temporal evolution of damage or anomalies. Their role in capturing
uncertainty and propagating risk makes them particularly suitable for post-disaster as-
sessments or ageing infrastructure operating under varying climate conditions. The ex-



pected outcome of implementing this framework is a highly autonomous SHM system
that operates with minimal human intervention while maintaining high levels of accu-
racy, adaptability, and interpretability. In practice, the system would continuously learn
from live sensor data, update its internal models, simulate future failure scenarios, and
inform asset managers of potential risks in real time.

Additionally, the proposed SGDT framework opens opportunities for:

• Improved maintenance scheduling through accurate prediction of damage progres-
sion.

• Integration with digital asset management platforms and Building Information
Modelling (BIM).

• Deployment on edge devices to enable decentralised intelligence for smart infras-
tructure networks.

• Increased safety and resilience of ageing infrastructure assets.

Despite its promising capabilities, real-world implementation of this framework poses
challenges, including data privacy concerns, hardware constraints for edge deployment,
and the need for high-quality sensor data over long periods. These will be addressed in
future research through targeted validation studies and prototype development in collab-
oration with infrastructure owners and stakeholders.

CONCLUDING REMARKS

This paper presents a comprehensive and forward-looking framework for SGDTs tai-
lored for real-time SHM and predictive maintenance of critical infrastructure. By inte-
grating HDT, PIML, Gen-AI, and Dynamic Diffusion Models, the framework addresses
core challenges in scalability, physical interpretability, data resilience, and predictive
capability. The hierarchical architecture ensures that both system-wide and component-
level behaviours are accurately captured, while physics-informed learning embeds engi-
neering knowledge into data-driven models to enhance trustworthiness. The inclusion of
Gen-AI enables autonomous model updating and data enhancement, and the diffusion
layer provides dynamic risk assessment across space and time.

The resulting SGDT system is not merely a static replica of the physical asset but a
living, adaptive intelligence capable of evolving with the structure it represents. This ap-
proach promises to redefine the landscape of SHM by enabling smarter, faster, and more
informed decision-making. Future work will focus on the real-world deployment and
validation of the proposed framework, integration with edge and cloud platforms, and the
development of open-access tools to facilitate adoption by infrastructure operators. Ul-
timately, this work contributes to the vision of sustainable, intelligent, and autonomous
infrastructure systems aligned with the goals of Industry 5.0 and smart cities.
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