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ABSTRACT 

Efficient and intelligent assessment of post-earthquake structural damage is critical 
for rapid disaster response. While data-driven approaches have shown promise, 
traditional supervised learning methods rely on extensive labeled datasets, which are 
often impractical to obtain for damaged structures. To address this limitation, we 
propose a physics-informed multi-source domain adaptation framework to predict post- 
earthquake structural damage for a target building without requiring damage labels. The 
multi-source domain integrates actual damage data and numerical modeling data from 
buildings similar to the target structure. The framework operates through three key 
steps. First, the similarity of key physics from each domain are analyzed to form a 
weight matrix, which enhances domain differentiation. Second, features from the multi- 
source and target domains are extracted and fed into a classifier and a discriminator. The 
classifier ensures that the features are damage-sensitive and accurately assign damage 
states, while the discriminator enforces that the features remain domain-invariant. 
Finally, the key parameters matrix is applied as weights during adversarial training to 
optimize the contribution of features from each source domain. The proposed 
framework provides a robust solution for assessing structural damage in scenarios 
where labeled data is scarce, significantly advancing the capabilities of post-earthquake 
damage evaluation. 
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INTRODUCTION 

Timely and reliable quantification of earthquake‐induced structural damage is 
fundamental to protecting human life, guiding emergency operations, and formulating 
recovery strategies [1]. Within hours of a major seismic event, civil authorities must 
identify buildings at risk of collapse, deploy rescue teams, and allocate temporary 
shelter and repair resources in an informed manner. For decades, these decisions have 
depended primarily on manual visual inspection [2,3]: professional engineers perform 
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systematic, building-by-building surveys, recording cracks, residual drifts, and other 

distress indicators before assigning safety tags. Although this practice is well 

established, it is inherently slow, labor-intensive, and exposes inspectors to considerable 

danger, particularly when aftershocks may trigger further structural degradation. 

Subjective judgements also lead to inter-inspector variability, and the procedure is 

difficult to scale to large metropolitan areas with thousands of buildings requiring rapid 

appraisal. 

Model-based numerical simulation provides a complementary pathway. Given 

sufficiently detailed as-built documentation, a nonlinear finite-element (FE) model 

updated with recorded ground motions can estimate inter-story drifts, plastic hinge 

rotations, and component stresses, thereby supporting objective and spatially resolved 

damage assessments [4]. In practice, however, reliable FE simulations depend on 

accurate material properties, boundary conditions, and ground motion records. These 

information is often incomplete or uncertain in the chaotic post-earthquake 

environment. Thousands of nonlinear analyses must be executed to cover the range of 

possible excitations and parameter variations, imposing a computational burden that 

limits real-time applicability. The unavoidable modelling uncertainties further 

complicate the interpretation of numerical predictions in urgent decision contexts. 

These limitations have stimulated a third line of research: data-driven structural-

health monitoring (SHM). Rather than relying exclusively on constitutive formulations, 

data-driven approaches learn the mapping from measured dynamic response to damage 

state directly from historical observations. When labelled datasets exist, supervised 

machine-learning (ML) models could achieve high classification accuracy, for example 

support vector machine (SVM) [5], convolutional neural network (CNN) [6]. After a 

damaging earthquake, however, the very labels that supervised models require are 

unavailable. Instead, generating those labels is the goal of the assessment. Moreover, a 

classifier trained on one structure frequently generalizes poorly to another because the 

distribution of features and damage state labels varies with geometry, mass distribution, 

and boundary conditions. This domain transfer problem is particularly severe in civil 

engineering, where each building is effectively unique. 

Domain adaptation (DA) offers a statistically principled solution by learning 

knowledge that remains damage-sensitive while becoming domain-invariant. Early 

SHM applications employed subspace-alignment techniques, such as Transfer 

Component Analysis (TCA) and Correlation Alignment, which project source and 

target data into a common latent space by minimizing kernelized statistical distances, 

typically the maximum mean discrepancy [7]. These methods improve robustness under 

moderate distribution differences; nonetheless, they rely on careful kernel selection, 

cannot easily handle missing sensors or variable record lengths, and deteriorate when 

the excitation intensity range differs substantially between structures [8]. 

Recent advances introduce adversarial DA [9], wherein a feature extractor is trained 

to deceive a domain discriminator while maintaining high classification accuracy—a 

minimax goal that encourages stronger distribution alignment [10,11]. Adversarial DA 

has enhanced performance in vibration-based damage localization, yet three critical 

challenges hinder its broader application for post-earthquake assessment. First, 

earthquake monitoring produces long, multi-channel time series acceleration sampled 

at high frequency. Extracting compact, informative features from such data is non-trivial 

[12]. Second, precise and specific frameworks require story-by-story damage estimates, 

not merely a global building state. Third, practical scenarios often provide labelled data 



from several buildings that differ in height, stiffness, or construction quality; balancing 

their influence is essential to avoid negative transfer. 

To address these issues, we propose a physics-informed multi-source domain-

adaptation (PI-MSDA) framework tailored to fully label-free post-earthquake damage 

assessment. The framework operates in three stages. (i) Physics-guided weight 

acquisition: relative height is used to form a similarity matrix that assigns weights to 

each labelled source domain, thereby favoring structures most similar to the unlabeled 

target domain. (ii) Adversarial feature learning: an one-dimensional convolutional 

neural network followed by a bidirectional long-short-term-memory (1D-CNN + Bi-

LSTM) encoder processes raw acceleration records from all domains. The resulting 

embeddings feed a damage classifier, trained solely on labelled sources, and three 

domain discriminators, each distinguishing one source from the target. This joint 

objective forces the extracted features to remain damage-sensitive while becoming 

domain-invariant. (iii) The weights are assigned to each source domain and further loss 

calculation is performed. The weighted loss from predictor and discriminator is then 

transferred back to the feature extractor to perform further feature extraction. 

The proposed methodology is evaluated using a comprehensive simulation 

campaign comprising nonlinear time-history analyses of 3 and 5-story reinforced-

concrete frames subjected to 5,400 recorded ground motions. All response–label pairs 

from the 3-story building constitute the labelled sources, whereas the first story response 

from the 5-story building serves as the unlabeled target. Despite never accessing target 

labels during training process, PI-MSDA achieves high story-level accuracy, 

demonstrating its capability to support rapid screening under acute data scarcity. 

METHODOLOGY 

The proposed multi-source adversarial domain-adaptation network is designed to 

transfer damage knowledge from labelled buildings to unlabeled building (target). The 

framework is organized into three blocks: feature extraction, damage prediction and 

discrimination. Together, these blocks create an system that learns damage-sensitive yet 

domain-invariant features and consequently delivers label-free damage estimates for the 

target building. The flowchart of this methodology is shown in Figure 1. 

 

Figure 1. Framework of PI-MSDA. 



Source Weights Acquisition 

The weights are determined with the aim of classifying the degree of contribution of 

different source domains in the training process. The similarity between the physics is 

chosen as a measure of the degree of contribution of the different source domains. To 

achieve this, a Gaussian kernel is used to calculate the similarity between the different 

source domains as well as the target domain and this similarity value is used as the 

weights. The Gaussian kernel is calculated using the following formula: 

 𝑆 = 𝒆
−

(𝒔−𝒕)𝟐

𝟐𝝈𝟐  (1) 

where, 𝑠 𝑎𝑛𝑑 𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑜𝑚𝑎𝑖𝑛, σ is the standard 

deviation of the 𝑝ℎ𝑦𝑠𝑖𝑐𝑠 in source domain. 

Feature Extractor 

Denote by 𝑋 ∈ 𝑅𝐿×4, a four-channel acceleration record of length 𝐿 obtained from a 

single story. The feature extractor maps the raw time series to a latent vector 𝑧  of 

dimension 𝑑. Its first stages are one-dimensional convolutions that act as data-driven 

filter banks, capturing local frequency content and reducing sequence length. The final 

stage is a bidirectional recurrent layer that aggregates long-range temporal dependencies. 

By design, 𝐺𝜃 is shared by every domain, consequently the same feature is imposed on 

source and target data. 

 𝑧 ∈ 𝐺𝜃(𝑥) (2) 

 𝑧 ∈ 𝑅𝑑 (3) 

Damage Predictor 

The classifier consists of one hidden layer and a soft-max output. It converts a latent 

vector into the posterior probabilities 𝑦̂ = (𝑝1, 𝑝2, 𝑝3) of the three drift-ratio classes. 

Parameters ϕ are learned only from labelled source data; no target labels are used at this 

stage. 

 𝑦̂ ∈ 𝐶𝜃(𝑧) (4) 

 𝑦̂ ∈ 𝑅3 (5) 

Domain Discriminator 

Because three separate labelled source stories are available, a distinct discriminator 

is assigned to each source domain 𝑆𝑖. For discriminator 𝑖 the positive class corresponds 

to  𝑆𝑖 and the negative class to the target story 𝑇. 

 𝑑𝑖 ∈ 𝐷𝜓𝑖
(𝑧)  (6) 

 𝑑𝑖 ∈ (0,1)  (7) 



Each 𝐷𝜓𝑖
  is connected to 𝐺𝜃   through a gradient-reversal layer: during back-

propagation the gradient entering 𝐺𝜃  is multiplied by −𝜆. The reversal causes 𝐺𝜃 to 

learn features that hinder the discriminators, thereby forcing the extracted features to 

become domain-invariant. 

Adversarial Training Routine 

During every training step a mini-batch containing samples from all sources and the 

target is assembled and forwarded according to 

 𝑥 → 𝐺𝜃 → {
𝐶𝜃(𝑑𝑎𝑚𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)

𝐷𝜓𝑖
(𝑑𝑜𝑚𝑎𝑖𝑛 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑖)

 (8) 

The classifier receives supervision from source labels, whereas the discriminators 

learn to separate 𝑆𝑖  from 𝑇. Because 𝐺𝜃  contributes to both tasks, it must balance 

damage sensibility against domain invariance. 

The weighted classification loss is: 

 𝐿𝑐𝑙𝑣 = ∑ 𝑤𝑖𝐸(𝑥,𝑦)∈𝑆𝑖[−𝑦𝑇𝑙𝑜𝑔𝐶𝜃(𝐺𝜃(𝑥))]3
𝑖=1  (9) 

where the inner term is the standard cross-entropy between one-hot label 𝑦 and 

prediction 𝑦̂. 

The adversarial loss for domain alignment is: 

 𝐿𝑎𝑑𝑣 = ∑ 𝑤𝑖(𝐸𝑥∈𝑆𝑖[𝑙𝑜𝑔𝐶𝜃(𝐺𝜃(𝑥))]3
𝑖=1 + 𝐸𝑥∈𝑇[𝑙𝑜𝑔(1 − 𝐷𝜓𝑖

(𝐺𝜃(𝑥))]) (10) 

a sum of binary cross-entropies that encourages each discriminator to distinguish its 

own source from the target. 

The complete minimax objective couples both terms: 

 min
𝜃,𝜑

max
𝜓1:3

(𝐿𝑐𝑙𝑣 − 𝜆𝐿𝑎𝑑𝑣) (11) 

For fixed weights 𝑤 and coefficient 𝜆 the discriminators increase the adversarial 

loss, whereas the extractor and classifier decrease the total objective, thereby resulting 

in a desired compromise. 

CASE STUDY 

Building and Seismic Properties 

The damage-diagnosis framework is demonstrated on two three-dimensional 

reinforced-concrete special moment frames designed in accordance with current U.S. 

practice: a three-story structure and a five-story counterpart. Both buildings comprise 

two bays in each horizontal direction with uniform 24-ft spans and maintain a constant 

story height of 14 ft. Concrete and reinforcing steel are described by the Concrete02 and 

Steel02 constitutive models, respectively, and fiber-based force elements model all 

beams and columns. Each floor slab is assumed to act as a rigid diaphragm so that lateral 

response is governed solely by the frame action. 



A M-7 seismic scenario is adopted for both frames. Horizontal ground-motion pairs 

are retrieved from the PEER NGA-West2 database. This query yields 180 ground 

motions. Each motion is subsequently assigned thirty scale factors, resulting 5 400 

record–scale combinations are applied separately to each building, and nonlinear 

response histories are generated with the parallel version of OpenSees to carry out 

incremental dynamic analyses efficiently. 

Dataset Establishment 

The numerical simulation provides a complete record of floor-level responses and 

corresponding inter-story deformations.  These outputs form the basis of the learning 

dataset used to train and evaluate the proposed domain-adaptation framework.   

1. Data acquisition—floor accelerations 

For the 3-story building, the nonlinear analysis yields a vector time series: 

 𝑎𝑘(𝑡) = [𝑎1
𝑘(𝑡), 𝑎2

𝑘(𝑡), . . . , 𝑎𝑛
𝑘(𝑡)] (12) 

for every ground-motion response k, where 𝑎𝑖
𝑘  denotes the absolute horizontal 

acceleration at the i-th floor diaphragm. Each floor is treated as an independent 

observation. Further, for each floor, we use the time series acceleration of the floor and 

ceiling as a feature of this floor. Also, each acceleration contains both x and y directions. 

Therefore, the final data layout for each feature is as follows: 

 𝑥 = [𝑎𝑖𝑥
𝑘 (𝑡), 𝑎𝑖𝑦

𝑘 (𝑡), 𝑎𝑖+1𝑥
𝑘 (𝑡), 𝑎𝑖+1𝑦

𝑘 (𝑡)]  (13) 

2. Label generation—peak drift ratio 

The same analysis provides the relative displacement histories 𝛥𝑖
𝑘(𝑡)  between 

adjacent floors. The maximum value over the record length, 

 𝛿𝑖
𝑘 = max

𝑡
|𝛥𝑖

𝑘(𝑡)| (14) 

is normalized by the corresponding story height ℎ𝑖 to obtain the peak drift ratio: 

 𝑟𝑖
𝑘 = 𝛿𝑖

𝑘/ℎ𝑖 (15) 

Each ratio is discretized into one of three damage states: Class 1 – 𝑟𝑖
𝑘 ∈ (0,1%); 

Class 2 – 𝑟𝑖
𝑘 ∈ (1%,2%); Class 3 – 𝑟𝑖

𝑘 ∈ (2%,~). The resulting integer label set y aligns 

one-to-one with the feature samples in x. 

Aggregating across all 5400 record per building, the procedure yields a balanced but 

diverse collection of floor-level acceleration features paired with categorical drift-ratio 

labels.  The distribution of samples among the three classes for both the three-story and 

five-story frames is summarized in Table 1, providing a explicit view of class balance 

prior to domain adaptation. 

TABLE I. THE LABEL DISTRIBUTION OF EACH CLASS 

Class 1 2 3 

5 Story Building 38% 40% 22% 

3 Story Building 39% 41% 20% 



3. Weight acquisition—relative height similarity 

Relative height was chosen as the physical measure of similarity between the 

different domains. Although this physical information is too simple to represent the 

distribution of information between different domains, it can still help the model to learn 

the knowledge in different source domains better to some extent. Table 2 shows the 

physics and similarity of the source and target domains. 

TABLE Ⅱ. RELATIVE FLOOR HEIGHT SIMILARITY 

Story 1 2 3 

3 Story Building (source) 1/3 2/3 3/3 

5 Story Building (target) 1/5 / / 

Similarity 97% 69% 33% 

Result 

When the CNN+BiLSTM model is used directly to learn the source domain data, it 

can be found that the model tests well on the source domain, achieving an overall 

accuracy of 90%. However, when it is directly predicting the labels in the target domain, 

the performance is very poor and almost unclassifiable. The results are shown in Fig. 2, 

a) and b), respectively. 

When using the proposed model, the predictive performance of the source domain 

shows some decline, with a reduced accuracy to 81%. However, the accuracy of the 

target domain showed a significant improvement to 72%. The results are shown in c) 

and d) in Fig. 2. This indicates that the knowledge of structural damage is transferred 

from the source domain to the target domain. 

 

Figure 2. The performance of the prediction results (Model1: CNN+BiLSTM training only with source 

domain; Model2: Proposed framework). 



In short, to some extent, these results suggest that the proposed domain-adaptation 

strategy can supply a rapid, label-free screening of post-earthquake drift demand. 

CONCLUSION 

Overall, the PI-MSDA predicts damage states with high accuracy on the labelled 3-

story source building and, without any target labels, carries that knowledge to the first 

story of 5-story target building. While accuracy inevitably declines from the source to 

the target domain, the model still preserves a reliable ranking of damage severity on 

every level, identifying most damage cases correctly. These findings confirm that the 

proposed scheme, to some extent, can deliver a rapid, label-free first appraisal of floor-

level drift demand, making it a practical aid for post-earthquake screening when detailed 

target labels are unavailable. 
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