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ABSTRACT

Efficient and intelligent assessment of post-earthquake structural damage is critical
for rapid disaster response. While data-driven approaches have shown promise,
traditional supervised learning methods rely on extensive labeled datasets, which are
often impractical to obtain for damaged structures. To address this limitation, we
propose a physics-informed multi-source domain adaptation framework to predict post-
earthquake structural damage for a target building without requiring damage labels. The
multi-source domain integrates actual damage data and numerical modeling data from
buildings similar to the target structure. The framework operates through three key
steps. First, the similarity of key physics from each domain are analyzed to form a
weight matrix, which enhances domain differentiation. Second, features from the multi-
source and target domains are extracted and fed into a classifier and a discriminator. The
classifier ensures that the features are damage-sensitive and accurately assign damage
states, while the discriminator enforces that the features remain domain-invariant.
Finally, the key parameters matrix is applied as weights during adversarial training to
optimize the contribution of features from each source domain. The proposed
framework provides a robust solution for assessing structural damage in scenarios
where labeled data is scarce, significantly advancing the capabilities of post-earthquake
damage evaluation.
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INTRODUCTION

Timely and reliable quantification of earthquake-induced structural damage is
fundamental to protecting human life, guiding emergency operations, and formulating
recovery strategies [1]. Within hours of a major seismic event, civil authorities must
identify buildings at risk of collapse, deploy rescue teams, and allocate temporary
shelter and repair resources in an informed manner. For decades, these decisions have
depended primarily on manual visual inspection [2,3]: professional engineers perform
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systematic, building-by-building surveys, recording cracks, residual drifts, and other
distress indicators before assigning safety tags. Although this practice is well
established, it is inherently slow, labor-intensive, and exposes inspectors to considerable
danger, particularly when aftershocks may trigger further structural degradation.
Subjective judgements also lead to inter-inspector variability, and the procedure is
difficult to scale to large metropolitan areas with thousands of buildings requiring rapid
appraisal.

Model-based numerical simulation provides a complementary pathway. Given
sufficiently detailed as-built documentation, a nonlinear finite-element (FE) model
updated with recorded ground motions can estimate inter-story drifts, plastic hinge
rotations, and component stresses, thereby supporting objective and spatially resolved
damage assessments [4]. In practice, however, reliable FE simulations depend on
accurate material properties, boundary conditions, and ground motion records. These
information is often incomplete or uncertain in the chaotic post-earthquake
environment. Thousands of nonlinear analyses must be executed to cover the range of
possible excitations and parameter variations, imposing a computational burden that
limits real-time applicability. The unavoidable modelling uncertainties further
complicate the interpretation of numerical predictions in urgent decision contexts.

These limitations have stimulated a third line of research: data-driven structural-
health monitoring (SHM). Rather than relying exclusively on constitutive formulations,
data-driven approaches learn the mapping from measured dynamic response to damage
state directly from historical observations. When labelled datasets exist, supervised
machine-learning (ML) models could achieve high classification accuracy, for example
support vector machine (SVM) [5], convolutional neural network (CNN) [6]. After a
damaging earthquake, however, the very labels that supervised models require are
unavailable. Instead, generating those labels is the goal of the assessment. Moreover, a
classifier trained on one structure frequently generalizes poorly to another because the
distribution of features and damage state labels varies with geometry, mass distribution,
and boundary conditions. This domain transfer problem is particularly severe in civil
engineering, where each building is effectively unique.

Domain adaptation (DA) offers a statistically principled solution by learning
knowledge that remains damage-sensitive while becoming domain-invariant. Early
SHM applications employed subspace-alignment techniques, such as Transfer
Component Analysis (TCA) and Correlation Alignment, which project source and
target data into a common latent space by minimizing kernelized statistical distances,
typically the maximum mean discrepancy [7]. These methods improve robustness under
moderate distribution differences; nonetheless, they rely on careful kernel selection,
cannot easily handle missing sensors or variable record lengths, and deteriorate when
the excitation intensity range differs substantially between structures [8].

Recent advances introduce adversarial DA [9], wherein a feature extractor is trained
to deceive a domain discriminator while maintaining high classification accuracy—a
minimax goal that encourages stronger distribution alignment [10,11]. Adversarial DA
has enhanced performance in vibration-based damage localization, yet three critical
challenges hinder its broader application for post-earthquake assessment. First,
earthquake monitoring produces long, multi-channel time series acceleration sampled
at high frequency. Extracting compact, informative features from such data is non-trivial
[12]. Second, precise and specific frameworks require story-by-story damage estimates,
not merely a global building state. Third, practical scenarios often provide labelled data



from several buildings that differ in height, stiffness, or construction quality; balancing
their influence is essential to avoid negative transfer.

To address these issues, we propose a physics-informed multi-source domain-
adaptation (PI-MSDA) framework tailored to fully label-free post-earthquake damage
assessment. The framework operates in three stages. (i) Physics-guided weight
acquisition: relative height is used to form a similarity matrix that assigns weights to
each labelled source domain, thereby favoring structures most similar to the unlabeled
target domain. (ii)) Adversarial feature learning: an one-dimensional convolutional
neural network followed by a bidirectional long-short-term-memory (1D-CNN + Bi-
LSTM) encoder processes raw acceleration records from all domains. The resulting
embeddings feed a damage classifier, trained solely on labelled sources, and three
domain discriminators, each distinguishing one source from the target. This joint
objective forces the extracted features to remain damage-sensitive while becoming
domain-invariant. (iii) The weights are assigned to each source domain and further loss
calculation is performed. The weighted loss from predictor and discriminator is then
transferred back to the feature extractor to perform further feature extraction.

The proposed methodology is evaluated using a comprehensive simulation
campaign comprising nonlinear time-history analyses of 3 and 5-story reinforced-
concrete frames subjected to 5,400 recorded ground motions. All response—label pairs
from the 3-story building constitute the labelled sources, whereas the first story response
from the 5-story building serves as the unlabeled target. Despite never accessing target
labels during training process, PI-MSDA achieves high story-level accuracy,
demonstrating its capability to support rapid screening under acute data scarcity.

METHODOLOGY

The proposed multi-source adversarial domain-adaptation network is designed to
transfer damage knowledge from labelled buildings to unlabeled building (target). The
framework is organized into three blocks: feature extraction, damage prediction and
discrimination. Together, these blocks create an system that learns damage-sensitive yet
domain-invariant features and consequently delivers label-free damage estimates for the
target building. The flowchart of this methodology is shown in Figure 1.
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Figure 1. Framework of PI-MSDA.



Source Weights Acquisition

The weights are determined with the aim of classifying the degree of contribution of
different source domains in the training process. The similarity between the physics is
chosen as a measure of the degree of contribution of the different source domains. To
achieve this, a Gaussian kernel is used to calculate the similarity between the different
source domains as well as the target domain and this similarity value is used as the
weights. The Gaussian kernel is calculated using the following formula:

_(s=0?

S=e 272 (1)

where, s and t is the physics from source and target domain, ¢ is the standard
deviation of the physics in source domain.

Feature Extractor

Denote by X € R1** a four-channel acceleration record of length L obtained from a
single story. The feature extractor maps the raw time series to a latent vector z of
dimension d. Its first stages are one-dimensional convolutions that act as data-driven
filter banks, capturing local frequency content and reducing sequence length. The final
stage is a bidirectional recurrent layer that aggregates long-range temporal dependencies.
By design, Gy is shared by every domain, consequently the same feature is imposed on
source and target data.

Z € Gg(x) (2)
z € R® (3)
Damage Predictor

The classifier consists of one hidden layer and a soft-max output. It converts a latent
vector into the posterior probabilities § = (p;, p2, p3) of the three drift-ratio classes.
Parameters ¢ are learned only from labelled source data; no target labels are used at this
stage.

y € Co(2) 4)
y € R3 (5)
Domain Discriminator

Because three separate labelled source stories are available, a distinct discriminator
is assigned to each source domain S;. For discriminator i the positive class corresponds
to S; and the negative class to the target story T.

d; € Dy, (2) 6)

d; € (0,1) (7



Each Dy, is connected to Gy through a gradient-reversal layer: during back-
propagation the gradient entering Gy is multiplied by —A. The reversal causes Gg to
learn features that hinder the discriminators, thereby forcing the extracted features to
become domain-invariant.

Adversarial Training Routine

During every training step a mini-batch containing samples from all sources and the
target is assembled and forwarded according to

Co(damage prediction on sources)
x = Gg = D.. (d , T . . , (8)
»;(domain discrimination for each Si)

The classifier receives supervision from source labels, whereas the discriminators
learn to separate Si from T. Because Gg contributes to both tasks, it must balance
damage sensibility against domain invariance.

The weighted classification loss is:

Loy = Zi3=1 WiE(x,y)eSi [_yTlogCB (Go(x))] ©)

where the inner term is the standard cross-entropy between one-hot label y and
prediction .
The adversarial loss for domain alignment is:

Laay = Xi=1 Wi(Exesi[logCo(Go(x))] + Exer[log (1 — Dy, (G (x))]) (10)

a sum of binary cross-entropies that encourages each discriminator to distinguish its
own source from the target.
The complete minimax objective couples both terms:

I"[gl’i(pl’l E}}B?(Lclv - /u'adv) (11)

For fixed weights w and coefficient A the discriminators increase the adversarial
loss, whereas the extractor and classifier decrease the total objective, thereby resulting
in a desired compromise.

CASE STUDY
Building and Seismic Properties

The damage-diagnosis framework is demonstrated on two three-dimensional
reinforced-concrete special moment frames designed in accordance with current U.S.
practice: a three-story structure and a five-story counterpart. Both buildings comprise
two bays in each horizontal direction with uniform 24-ft spans and maintain a constant
story height of 14 ft. Concrete and reinforcing steel are described by the Concrete()2 and
Steel()2 constitutive models, respectively, and fiber-based force elements model all
beams and columns. Each floor slab is assumed to act as a rigid diaphragm so that lateral
response is governed solely by the frame action.



A M-T7 seismic scenario is adopted for both frames. Horizontal ground-motion pairs
are retrieved from the PEER NGA-West2 database. This query yields 180 ground
motions. Each motion is subsequently assigned thirty scale factors, resulting 5400
record—scale combinations are applied separately to each building, and nonlinear
response histories are generated with the parallel version of OpenSees to carry out
incremental dynamic analyses efficiently.

Dataset Establishment

The numerical simulation provides a complete record of floor-level responses and
corresponding inter-story deformations. These outputs form the basis of the learning
dataset used to train and evaluate the proposed domain-adaptation framework.

1. Data acquisition—floor accelerations

For the 3-story building, the nonlinear analysis yields a vector time series:

a*(t) = [af (1), a5(t),..., ax ()] (12)

for every ground-motion response k, where a¥ denotes the absolute horizontal
acceleration at the i-th floor diaphragm. Each floor is treated as an independent
observation. Further, for each floor, we use the time series acceleration of the floor and
ceiling as a feature of this floor. Also, each acceleration contains both x and y directions.
Therefore, the final data layout for each feature is as follows:

x = [a(6), af, (£), afs 1, (), a1, (O] (13)

2. Label generation—peak drift ratio
The same analysis provides the relative displacement histories A% (t) between
adjacent floors. The maximum value over the record length,

5 = max|47 ()| (14)
is normalized by the corresponding story height h; to obtain the peak drift ratio:
=8/ (15)

Each ratio is discretized into one of three damage states: Class 1 —rl-k € (0,1%);
Class 2 — 1 € (1%,2%); Class 3 — 1/ € (2%,~). The resulting integer label set y aligns
one-to-one with the feature samples in x.

Aggregating across all 5400 record per building, the procedure yields a balanced but
diverse collection of floor-level acceleration features paired with categorical drift-ratio
labels. The distribution of samples among the three classes for both the three-story and
five-story frames is summarized in Table 1, providing a explicit view of class balance
prior to domain adaptation.

TABLE I. THE LABEL DISTRIBUTION OF EACH CLASS
Class 1 2 3
5 Story Building 38% 40% 22%
3 Story Building 39% 41% 20%




3. Weight acquisition—relative height similarity

Relative height was chosen as the physical measure of similarity between the
different domains. Although this physical information is too simple to represent the
distribution of information between different domains, it can still help the model to learn
the knowledge in different source domains better to some extent. Table 2 shows the
physics and similarity of the source and target domains.

TABLE II. RELATIVE FLOOR HEIGHT SIMILARITY

Story 1 2 3
3 Story Building (source) 1/3 2/3 3/3
5 Story Building (target) 1/5 / /
Similarity 97%  69% 33%

Result

When the CNN+BiLSTM model is used directly to learn the source domain data, it
can be found that the model tests well on the source domain, achieving an overall
accuracy of 90%. However, when it is directly predicting the labels in the target domain,
the performance is very poor and almost unclassifiable. The results are shown in Fig. 2,
a) and b), respectively.

When using the proposed model, the predictive performance of the source domain
shows some decline, with a reduced accuracy to 81%. However, the accuracy of the
target domain showed a significant improvement to 72%. The results are shown in c)
and d) in Fig. 2. This indicates that the knowledge of structural damage is transferred
from the source domain to the target domain.
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Figure 2. The performance of the prediction results (Modell: CNN+BiLSTM training only with source
domain; Model2: Proposed framework).



In short, to some extent, these results suggest that the proposed domain-adaptation
strategy can supply a rapid, label-free screening of post-earthquake drift demand.

CONCLUSION

Overall, the PI-MSDA predicts damage states with high accuracy on the labelled 3-
story source building and, without any target labels, carries that knowledge to the first
story of 5-story target building. While accuracy inevitably declines from the source to
the target domain, the model still preserves a reliable ranking of damage severity on
every level, identifying most damage cases correctly. These findings confirm that the
proposed scheme, to some extent, can deliver a rapid, label-free first appraisal of floor-
level drift demand, making it a practical aid for post-earthquake screening when detailed
target labels are unavailable.
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