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ABSTRACT

The viability of many machine learning methods within Structural Health Monitoring
(SHM) is often limited by the lack, or the incompleteness, of the data required for imple-
menting these algorithms. Indeed, learning a data-based SHM predictive model usually
requires the dynamic response availability for undamaged and damaged states, and the
assumption that both training and test data refer to the same domain. In this frame-
work, the population-based approach to Structural Health Monitoring (PBSHM) aims at
improving the performance and the robustness of diagnostic inferences, exploiting the
transfer of damage-state knowledge across a population of structures. However, sharing
these data produces a meaningful inference only if the structures, and their datasets, are
sufficiently similar. Therefore, an initial phase of similarity assessment becomes essen-
tial before being able to apply transfer learning algorithms. This phase shows which
structures are suitable for knowledge sharing, if any, reducing the possibility of negative
transfer. Some distance metrics have been proposed, exploiting abstract representations
of structures, such as Irreducible Element (IE) models and Attributed Graphs (AGs).
Although these metrics can consider the structure attributes, many performed compar-
isons mainly concern structural topology. This study aims at broadening the application
of similarity assessment, focussing on the geometrical and material differences in the
distance metrics. Therefore, a heterogeneous population of laboratory-scale aircraft is
analysed. These structures predominantly follow the geometry of a benchmark study
conducted by the Structures and Materials Action Group (SM-AG19) of the Group for
Aeronautical Research Technology in EURope (GARTEUR). The IE models of these
aircraft are produced. Subsequently, Graph Matching Network (GMNs) are used to de-
termine the similarity matrix. The structures in the Garteur population are topologically
homogeneous, which enables a more accurate investigation of how attributes can in-
fluence distance metrics. This paper constitutes the first step in the Garteur structures
population investigation.
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The similarity assessment results will establish which population members are most
suitable for applying transfer learning algorithms. It will enable the subsequent devel-
opment, and experimental validation, of a population-based strategy for damage identi-
fication across heterogeneous structures.

INTRODUCTION

In the context of Structural Health Monitoring (SHM), the limited availability and in-
complete nature of experimental measurements, challenge the application of many of the
data-based SHM methodologies proposed recently. Thus, the theory of population-based
Structural Health Monitoring (PBSHM) has been proposed to address this issue |1+3],
by sharing knowledge within a population of structures to improve diagnostic inferences
on a target structure for which experimental data may be insufficient. The population
can be classified as homogeneous or heterogeneous, based on the similarity between the
structures. Homogeneous populations allow for minor differences, such as in construc-
tion specifications, whereas heterogeneous populations may comprise many different
systems. However, it is crucial to establish structural similarity to determine when in-
formation can be shared and prevent “negative transfer”, particularly in heterogeneous
populations.

To measure similarity, structures can be represented abstractly in the form of Irre-
ducible Element (IE) models, and Attributed Graphs (AGs) [2]. These models consist of
a simple yet representative topological description of the main components of a struc-
ture, i.e., elements having a well-established dynamic behaviour, and can be compared
via distance metrics. It is possible to associate attributes with each element of the model,
which encompass characteristics such as element type, geometry, materials and dimen-
sions. Moreover, elements are connected by relationships, and each of these relation-
ships can have an attribute vector to record their properties.

IE models can be compared using graph-matching algorithms which allow for a
quantitative evaluation of their similarities. One commonly-used approach, described
in 2], involves computing the maximum common subgraph (MCS) between two struc-
tures. This subgraph is defined as the largest subset of nodes and edges that are common
to both structures, and its size relative to the overall size of the graphs can be used as
a measure of their similarity. However, this method could be improved with the imple-
mentation of a canonical form of IE models, which has recently been introduced in [4].
Furthermore, the similarity metrics should be capable of taking into account multiple
attributes for each node and edge of the graph. The system should be able to manage
various types of attributes, including discrete and continuous ones, and must be adapt-
able to the heterogeneous structures found in the database.

The current study aims to investigate a distance metric based on Graph Matching
Networks (GMN) [5], to assess the degree of similarity in a population of laboratory-
scale aircraft models. Although these aircraft models have minor topological differences,
they are still heterogeneous because of their diverse attributes. This characteristic makes
it possible to focus on the influence of the attributes on the GMN-based similarity met-
rics. The following sections describe the GMN method and introduce the case study of
the Garteur aircraft. The results will be presented for different cases, to demonstrate how
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(a) No-winglets configuration. (b) End-winglets configuration.
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(c) Middle-winglets/engines configuration. (d) Both-winglets/engines configuration.

Figure 1. The Garteur IE models in the four topological configurations. No winglets
present on the wings, winglets in the middle of the wings to simulate the presence of
an engine, winglets at the end of the wings, and winglets in both the middle and end
positions.

varying the considered attributes affects the similarity measures between the models.

METHODS

Structural similarity can be assessed using different strategies, according to which
structures are being compared, and which parameters are most relevant for the specific
case studies. Besides the use of the MCS-based method and the Jaccard index [2], further
research focusses on GNNs [4], and Kernel-based methods [6]. This paper expands on
the use of Graph Matching Networks.

GMNs have been proposed as an extension to GNNs, for similarity assessment [5].
By leveraging a cross-graph attention mechanism to match nodes across different graphs
and identify their differences, GMNs allow computing a similarity score with increased
accuracy as a result of node and edge attribute embedding. Graph Matching Networks
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Figure 2. Distance matrix of the aircraft population based on the four topology classes.

(GMN5s) have been introduced to measure the similarity of IE models of bridges in the
PBSHM database . While the primary focus is on graph topology, GMNs enable
including numerical and categorical attributes as vectors for each node and edge. There-
fore, after assessing the ability of GMNs for topological comparisons, element and rela-
tionship types have been integrated into a bridge case study in [7]).

In this study, the use of GMNs is extended to a population of laboratory-scale aircraft,
which are represented by IE models. These models are developed from the benchmark
study conducted by the Structures and Materials Action Group (SM-AG19) of the Group
for Aeronautical Research Technology in EURope (GARTEUR) . Hence, variations
in geometries, materials and dimensions are introduced to create a comprehensive exper-
imental dataset, including the structures analysed in [9]. These variations result in a het-
erogeneous population, although with limited topological differences, from the presence
of winglets, or engines, in four possible configurations (examples of the corresponding
IE models are shown in Fig|[T).

The construction of the Garteur IE model is described in , where its topology
is compared with a broad population, including bridges and aircraft. However, to train
the network for the similarity assessment task, it is necessary to provide a large dataset,
consisting of pairs of graphs (G, G2) with an associated label t € {—1,1}, where ¢ = 1
when (1 and GG are similar and ¢ = —1 when G| and (G are dissimilar.

A synthetic dataset of Garteur aircraft has therefore been generated, comprising 5000
IE models. These are distinguished into twenty similarity classes, depending on four
topological configurations and five scaling groups. In addition, the attributes of materi-
als, geometry, and element dimensions are randomly defined for each class. Initially, the
GMN is applied using just the four different winglet topologies for classifying similar
and dissimilar models. Afterwards, this is expanded to include the scaling groups as
features to be examined for determining the degree of similarity.
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Figure 3. Distance matrix of the aircraft population based on the four topology classes,
embedding element and relationship types, element contextual, material and geometry
attributes. This is a subset of the results and the full result can be seen in Appendix (a).

RESULTS

The GMN is trained using pairs of Garteur IE models from the dataset, which is split
into training, validation and test sets. For analysing the effects of attributes, multiple
hypotheses on the classification rule and different combinations of attributes are included
in the network. The first similarity assessment rule only concerns topology-based classes
(no winglets, end winglets, middle winglets or engines and both winglets and engines).
Aircraft of the same class are labelled as similar, otherwise they are labelled as dissimilar.
Figshows the results of the comparison if no attributes are embedded in the network.
The results are expressed in terms of graph distance, normalised between 0 and 1. It
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Figure 4. Distance matrix of the aircraft population based on the twenty classes (topol-
ogy and scaling group), embedding element and relationship types, element contextual,
material and geometry attributes. This is a subset of the results and the full result can be
seen in Appendix (b).

can be noted how the GMN is able to distinguish the various classes, giving maximum
distance values between no-winglets graphs and graphs with both winglets and engines.
However, for improved performance, it is necessary to introduce some attributes. Fig
shows how, by embedding the attributes of element and relationship types, and especially
the contextual attributes, the middle-winglets/engines class can be better distinguished
from the others.

In addition, the study focusses on the effect of the dimensions of the test struc-
tures. Along with materials and geometry, the dimensions play a significant role in
vibration-based features that can be extracted experimentally and used in knowledge
transfer. Thus, it is intended to study how to embed these attributes in the graphs and
how to integrate them into the similarity rule used in the GMN training. In the third case



analysed, material types, geometry types and contextual labels are introduced as cate-
gorical attributes for each graph node, according to the possibilities established by the
PBSHM schema. Regarding dimensions, the normalised element length is introduced
into the attribute array for each node. The effects of these attributes in the topology-
based similarity evaluation are shown in Fig E} It is noticeable that the attributes result
in an increased distance between the two middle configurations and the end-winglets
and both-winglets configurations. Furthermore, attributes cause a slight variation in the
distance values within each cluster. However, to observe the dimensions influence, it is
necessary to introduce them in the classification rule used to label the graph pairs. The
dataset is divided into five clusters according to the scaling factor of the IE model com-
pared to the original one. Therefore, by classifying the graphs as similar if they exhibit
the same topology and scaling group, the distances shown in Fig are obtained. The
clustering of topological classes is less distinct because of the simultaneous effect of the
scaling ratios. Hence, distance values are closer between the various topological classes.
However, the matrix shows increasing distance values with the change in topology from
the both-winglets configuration to the no-winglets one. Furthermore, for each combina-
tion of topology classes, an increasing distance is observed as the scaling factor between
the IE models increases.

CONCLUSIONS

In conclusion, this study investigates the use of Graph Matching Networks (GMN)
for examining the impact of graph attributes on similarity assessment. Specifically, the
analysis is conducted on the population of Garteur aircraft, where the main differences
concern element attributes. The findings demonstrate that incorporating attributes, such
as element and relationship types, and contextual labels, significantly improves the GMN
ability to distinguish between various topological classes. Moreover, the study explores
the effect of dimensions on the similarity metric’s performance. To assess this effect,
further partitioning of the dataset based on the scale factor is necessary. These results
suggest that incorporating attributes in the GMN and considering them in the classifica-
tion rule could enhance similarity evaluation accuracy and facilitate knowledge transfer
in the PBSHM system. Further research is required on how to incorporate additional
structural attributes such as material mechanical properties, and how to define their role
in the definition of similarity within the GMN, according to the case study of interest.
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APPENDICES
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(a) Distance matrix of the aircraft population based on the four topology classes, em-
bedding element and relationship types, element contextual, material and geometry at-
tributes.
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(b) Distance matrix of the aircraft population based on the twenty classes (topology and
scaling group), embedding element and relationship types, element contextual, material
and geometry attributes.





